Azimuthal LW Flux Dependence from CERES/Terra Along-Track Data

K. Loukachine

SAIC, Hampton, VA

N.G. Loeb

Hampton University, Hampton, VA

CERES-II Science Team Meeting, March 2004

THEME OF STUDY

Forward scatter Colder temperature measured Back scatter
Warmer temperature measured

Along-Track Data Analysis: CERES and MODIS Geometry

Method Outline

- Narrow-to-broadband conversion for regions using FAPS data, VZA < 10°. Geo-resolution:</p>
 1° in longitude and 0.02 in sin(latitude).
- ♣ Application of the narrow-to-broadband conversion to MODIS radiance w/ STD(fit) < 1%, along-track data, FOV-level analysis: selecting FOVs w/ VZA difference from 50° to 60°.
- Scene type: IGBP from 1 to 16, except IGBP 11 (permanent wetlands), 13 (urban areas) and 15 (permanent snow and ice). Snow cover = 0%, Latitude: 60° North to 60° South.

Region Sampling: Total

(48 days of along-track data, SSF Edition-2A)

Relative Surface Variability:

STD(alt) (%) (consistent with Minnis et al.)

Region Sampling: STD(alt) > 0%

(48 days of along-track data, SSF Edition-2A)

Clr. Land 1a: 15% < STD(alt) < 30%; $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

Clr. Land 1b: 15% < STD(alt) < 30%; $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

Clr. Land 2a: 30% < STD(alt) < 50%; $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

Clr. Land 2b: 30% < STD(alt) < 50%; $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

Clr. Land 3a: STD(alt) > 50%, $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

Clr. Land 3b: STD(alt) > 50%, $VZA = 60^{\circ}$; $SZA > 50^{\circ}$.

STD(alt) > 50%: Location of Selected FOVs (red - forward, green - backscattering)

Difference in Radiance, RAZ effect on LW Flux Cloud Cover < 1%

STD(alt) Range	Rc(F) - Rc(B)	Rm(F) - Rm(B)	LW FLUX
(%)	(Wm ⁻² sr ⁻¹)	(Wm ⁻² sr ⁻¹)	(Wm ⁻²)
15 - 30	-1.59	-0.43	-4.05
30 - 50	-1.84	-0.26	-5.77
> 50	-2.32	0.45	-9.23
o.o (CLR.OCEAN)	0.04	0.05	-0.13

Difference in Radiance, RAZ effect on LW Flux 1% < Cld. Cover < 50%

STD(alt) Range (%)	Rc(F) - Rc(B) (Wm ⁻² sr ⁻¹)	Rm(F) – Rm(B) (Wm ⁻² sr ⁻¹)	LW FLUX (Wm ⁻²)
15 - 30	No consistent effect		
30 - 50	-0.83	0.26	-3.53
> 50	-2.43	-0.11	-7.37
o.o (PC. OCEAN)	0.62	0.83	-0.48

Corrections

- Land: All IGBP types together.
- Simultaneous sampling of a region with both forward and backscattering viewing geometry.
- \pmb For given angular bin:

$$Delta = F(vza) - F(nadir)$$

F(vza), F(nadir) & Delta are mean values (48 days of along-track data).

Application (instantaneous):

F(new) = F(original) - Delta

RAZ Correction Bins

Index	Variable	N Bins	Bin Width
1	IGBP	2	7, 10
		(stat ?)	1-5, 6, 8, 9, 12, 16
2	Cld. Cover	2	0 - 1
	(%)		1 - 50
3	VZA	2	40 - 50
	(°)		50 - 70
4	RAZ	2	F: 0 - 40
	(°)		B: 140 - 180
5	SZA	2	30 - 50
	(°)		50 - 70
6	STD(ALT)	3	15 - 30
	(%)		30 - 50
			> 50

Correction Test: VZA = 60°; SZA > 50°; Cloud Cover < 1%

Correction Test: Clear Land, Instantaneous LW Flux Consistency

Global RMS

Original (SSF): 6.26 Wm⁻² (2.01%)

Corrected: 5.97 Wm⁻² (1.92%)

Summary

- Observed dependency of clear-sky land LW flux on RAZ is consistent with that in Minnis et al. paper draft.
- Statistics can be increased factor of two by using all Terra/CERES along-track data (May, 2004).
- Correction to CERES LW radiance can be derived from along-track data for the configurations: large VZA, SZA, and surface variability.
- Percentile of corrected data (Terra) = 2.93%.
- Major issue is <u>SAMPLING</u>.